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Abstract: Salinity affects the photosynthetic capacity of plants, reducing their efficiency and 

productivity. Therefore, it is necessary to seek alternatives to mitigate these negative effects, 

such as the application of biostimulants based on Ascophyllum nodosum, which can help restore 

photosynthetic function. This study aimed to evaluate the effects of foliar application of the 

biostimulant on mitigating salt stress on the photochemical efficiency of Moringa oleifera. The 

experiment was conducted at the Federal University of Paraíba, Areia, Paraíba, Brazil. The 

experimental design was a randomized block design, with four replicates and two plants per 

plot, with five levels of irrigation water electrical conductivity (ECw – 0.50, 1.88, 5.25, 8.62, 

and 10.00 dS m-1) and five concentrations of foliar-applied biostimulant (0.00, 1.45, 5.00, 8.55, 

and 10.00 ml L-1). The brackish water caused reductions in photochemical efficiency and stem 

diameter of moringa seedlings, with significant damage starting at an ECw of 5.25 dS m-1. The 

application of the biostimulant at concentrations of 5 mL L-1 and above improved 

photochemical activity and growth of moringa seedlings under salt stress of up to 10.0 dS m-1 

at 60 days after sowing. 
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Introduction 

Soil salinity is one of the main 

challenges for global agriculture, 

particularly in semi-arid regions such as 

northeastern Brazil. In these areas, irregular 

water availability often leads to increased 

use of lower-quality water for agriculture 
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(Castro and Santos, 2020; Pessoa et al., 

2022; Ahmed et al., 2024). 

The use of water with high salt 

concentrations has caused significant 

negative impacts on plants, compromising 

their photosynthetic efficiency and leading 

to the overproduction of reactive oxygen 

species (ROS), which affect photosynthetic 
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activity, metabolism, and, ultimately, plant 

growth (Hasanuzzaman et al., 2021a). 

In this context, Moringa oleifera, 

belonging to the Moringaceae family, 

emerges as a promising crop for areas 

affected by salinity due to its relative 

tolerance to adverse conditions 

(Mahaveerchand and Salam, 2024). 

Additionally, moringa is a highly nutritious 

food source, with leaves that provide 

significant amounts of β-carotene, vitamin 

C, calcium, protein, potassium, and iron, 

surpassing the levels found in carrots, 

oranges, milk, peas, bananas, and spinach 

(Alam et al., 2020). 

Moreover, the growing demand for 

solutions to mitigate the harmful effects of 

salt stress has drawn attention to 

biostimulants (Hasanuzzaman et al., 2021b; 

Zuzunaga-Rosas et al., 2023; Abdelkhalik 

et al., 2024). These compounds contain 

bioactive substances, such as 

phytohormones, amino acids, seaweed 

extracts, humic acids, chitosan, beneficial 

microorganisms, vitamins, and 

antioxidants, which have demonstrated the 

ability to modulate plant metabolism and 

enhance their resistance to salt stress 

(Sanches et al., 2019; Malik et al., 2021). 

A notable example of a biostimulant is 

the seaweed Ascophyllum nodosum, which 

is rich in carbohydrates and essential 

nutrients. It stimulates the synthesis of 

phytohormones such as auxins and 

gibberellins, triggering genetic responses 

for defense and hormonal regulation. This 

enhances the plants’ ability to tolerate 

salinity (Silva et al., 2016; Hadia et al., 

2020). Its effectiveness in mitigating salt-

induced damage, promoting higher 

photosynthetic rates, and consequently 

increasing plant growth, has been 

demonstrated in crops such as tomato 

(Dell’aversana et al., 2021), rice (Shahzad 

et al., 2023), jack bean (Sales et al., 2024), 

and soybean (Silva et al., 2024). However, 

its effect on moringa remains unknown. 

Considering the potential of M. oleifera 

in the restoration of degraded areas and the 

significant relevance of using biostimulants 

to maximize plant production, this study 

aimed to evaluate the effects of foliar 

application of the biostimulant on 

mitigating salt stress on the photochemical 

efficiency of M. oleifera. 

 

Materials and Methods 

Experimental place 

The experiment was conducted from 

May to August 2019 in a protected 

environment at the Center for Agricultural 

Sciences, Federal University of Paraíba, 

Areia, Paraíba, Brazil (6° 58’ 00” S and 35° 

41’ 00” W, with an altitude of 575 m). 

According to the Köppen classification, the 

region’s climate is As’, characterized by a 

dry, hot summer and rainfall in the winter 

(Alvares et al., 2013). The average 

temperature observed during the 

experiment was 27.5°C, with maximum and 

minimum temperatures ranging between 

36.2 and 18.8°C, respectively. 

 

Experimental design and treatments 

The experimental design was a 

randomized block design, with four 

replications and two plants per plot, 

arranged according to the Central 

Composite Design (Mateus et al., 2001). 

The treatments included five levels of 

electrical conductivity of irrigation water 

(ECw) and five concentrations of foliar-

applied biostimulant (Table 1). 

 

Plant material and treatments 

The seedlings were produced from seeds 

obtained from healthy plants free from pest 

attacks, located in the municipality of 

Areia-PB. The seeds were sown in black 

polyethylene bags with a capacity of 1.2 

dm3, filled with a substrate consisting of 

85% Latosol, 10% washed fine sand, and 

5% cattle manure (v:v). The substrate was 

analyzed for physical and chemical 

characteristics, fertility, and salinity using 

methodologies proposed by Richards 

(1954) and Teixeira et al. (2017), as 

indicated in Table 2. 
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Table 1: Schematic representation of the combinations and factors (ECw – electrical 

conductivity of irrigation water; Bio – biostimulant concentrations) used in the experiment 

Treatments 
Levels Doses 

ECw Bio ECw (dS m-1) Bio (mL L-1) 

1 -1 -1  1.88 1.45 

2 -1 1  1.88 8.55 

3 1 -1  8.62 1.45 

4 1 1  8.62 8.55 

5 -1.41(α) 0  0.50 5.00 

6 1.41(α) 0  10.00 5.00 

7 0 -1.41(α)  5.25 10.00 

8 0 1.41(α)  5.25 0.00 

9 0 0  8.25 5.00 

 

Table 2: Physical and chemical composition of the substrate used in the experiment 

Physical Value Fertility Value Salinity Value 

Sand (g kg-1) 639 pH in water (1:2.5) 7.00 pH 7.30 

Silt (g kg-1) 227 P (mg dm-3) 146.32 ECse (dS m-1) 0.73 

Clay (g kg-1) 134 K+ (mg dm-3) 633.29 SO4
-2 (mmolc L

-1) 1.02 

Textural class Sandy 

loam 

Na+ (cmolc dm-3) 0.27 Ca2+ (mmolc L
-1) 16.00 

Al3+ (cmolc dm-3) 0.00 Mg2+ (mmolc L
-1) 16.75 

  H+ + Al3+ (cmolc dm-3) 2.84 K+ (mmolc L
-1) 6.90 

  Ca2+ (cmolc dm-3) 5.53 CO3
-2 (mmolc L

-1) 0.00 

  Mg2+ (cmolc dm-3) 1.70 HCO3
-2 (mmolc L

-1) 40.00 

  SB (cmolc dm-3) 9.12 Cl- (mmolc L
-1) 30.00 

  CEC (cmolc dm-3) 11.96 Na+ (mmolc L
-1) 0.89 

  OM (cmolc dm-3) 26.69 SAR (mmolc L
-1) 0.94 

    ESP (%) 2.25 

    Classification No-saline 
SB – sum of bases (Na+ + K+ + Ca2+ + Mg2+); CEC – cation exchange capacity [SB + (H+ + Al3+)]; OM – organic 

matter; ECse – electrical conductivity of the saturation extract; SAR – sodium adsorption ratio: Na+ × [(Ca2+ + 

Mg2+)/2] – 1/2; ESP – exchangeable sodium percentage (100 × Na+/CEC). 

 

The electrical conductivity of each 

irrigation water (ECw) above 0.5 dS m-1 

was achieved by diluting sodium chloride 

(NaCl) with water from the supply system 

(ECw of 0.5 dS m-1) to the predetermined 

value using a portable microprocessor-

based conductivity meter model CD-860 

(Instrutherm® Instrumentos de Medição 

Ltda., São Paulo, SP, Brazil). The values of 

irrigation water electrical conductivity were 

selected based on Tavares Filho et al. 

(2020), who observed inhibitory effects of 

salinity on moringa seedlings irrigated with 

ECw ranging from 0.24 to 10.00 dS m-1. 

Irrigation was carried out daily, with 

brackish water application starting at 10 

days after emergence (DAE). The volume 

applied was determined using the drainage 

lysimetry method, based on the difference 

between the applied and drained amounts, 

to maintain substrate moisture at field 

capacity levels. The basic formula 

(Equation 1) used was according Bernardo 

et al. (2019). 

P + I = ET + D + ΔS                                 (1) 

Where: P – precipitation, in mm; I – 

irrigation (water applied manually), in mL; 

ET – evapotranspiration, in mm; D – 

drainage; ΔS – variation in water storage in 

the pot’s substrate, in mL. 

 

The biostimulant doses were applied 

starting from 10 days after emergence 

(DAE), using a seaweed extract from the 

species Ascophyllum nodosum of the 
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Acadian® commercial product (Agritech, 

Dryden, ON, Canada), composed of: N – 

8.12, P – 6.82, K – 12.00, Ca – 1.60, Mg – 

2.03, and S – 8.16 g kg-1; B – 5.74, Cu – 

13.60, Fe – 11.50, Mn – 0.04, Zn – 24.40, 

and Na – 20000 mg kg-1; potassium 

hydroxide, with 61.48 g L-1 of soluble K2O; 

69.60 g L-1 of total organic carbon; and a 

density of 1.16 g dm-3 (Silva et al., 2016). 

Fertilizations were divided into six foliar 

applications to avoid leaching or toxicity to 

the plants, performed weekly in the late 

afternoon using sprayers, applying 

approximately 100 mL of solution of the 

respective doses per plant. 

 

Variables analyzed 

At 60 DAE, assessments of 

photosynthetic pigments were conducted by 

determining chlorophyll indices a, b, total, 

and the chlorophyll a/b ratio using non-

destructive methods. This involved using a 

ClorofiLOG® CFL1030 portable meter 

(Falker, Porto Alegre, RS, Brazil), with 

values expressed in Falker chlorophyll 

index (FCI). Additionally, chlorophyll 

fluorescence was measured using a 

modulated fluorometer model OS-30p 

(Sciences Inc., Hudson, NH, USA). Prior to 

measurements, leaf clips were applied for 

30 min to adapt leaves to darkness, and 

measurements included initial fluorescence 

(F0), maximum fluorescence (Fm), variable 

fluorescence (Fv = Fm – F0), Fv/F0 ratio, and 

the quantum yield of photosystem II 

(Fv/Fm). 

The relative growth rates of plant height 

(RGRph) and stem diameter (RGRsd) were 

obtained between 10 and 60 DAE using the 

methodology proposed by Benincasa 

(2003), as presented in Equation 2. 

 

RGR = 
lnA2 – lnA1

t2 – t1
 

 

Where: RGR – relative growth rate, in cm 

cm-1 day-1 for plant height and mm mm-1 

day-1 for stem diameter; A2 – plant height 

(cm) or stem diameter (mm) at 60 DAE; A1 

– plant height (cm) or stem diameter (mm) 

at 10 DAE; t2 – t1 – time difference (days) 

between evaluations; ln – natural logarithm. 

 

Statistical analysis 

The data were subjected to a normality 

test using the Shapiro-Wilk test and a 

homogeneity test using Bartlett’s test. The 

data were subjected to analysis of variance 

and regression using the statistical software 

R (R Core Team, 2023). 

 

Results and Discussion 

Based on the variance analysis, there was 

a significant interaction between the factors 

electrical conductivity of irrigation water 

(ECw) and biostimulant (Bio) for 

chlorophyll b (Chl. b), total chlorophyll 

(Chl. To), chlorophyll a/b ratio (Chl. a/b), 

initial fluorescence (F0), maximum 

fluorescence (Fm), variable fluorescence 

(Fv), and the Fv/Fm ratio, as well as for the 

relative growth rates of plant height 

(RGRph) and stem diameter (RGRsd) in 

moringa irrigated from 10 to 60 days after 

emergence (DAE). The isolated effect of 

the factors was observed in chlorophyll a 

(Chl. a) index at 60 DAE. 

The chlorophyll a index in moringa 

plants also increased with the rise in ECw, 

following a quadratic pattern, and reached 

an estimated maximum of 34.87 FCI when 

irrigated with 7.89 dS m-1, before 

subsequently decreasing (Figure 1A). This 

initial increase in chlorophyll a is due to the 

activation of defense mechanisms that 

enhance the plant’s acclimation to stress 

conditions, such as the synthesis of 

osmolytes and hormonal regulation, which 

can stimulate chlorophyll a production to 

maximize photosynthetic efficiency. 

However, at higher ECw levels, the salt 

stress becomes excessive, causing damage 

to chloroplasts, metabolic dysregulation, 

and increased production of reactive 

oxygen species (ROS), which degrade 

chlorophyll (Ameen et al., 2024; Bezerra 

al., 2024). 

The biostimulant increased the 

chlorophyll a by 6.49% when applied at a 

concentration of 10 mL L-1 (Figure 1B). 

(2) 
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This effect is attributed to the biostimulant’s 

ability to protect chloroplasts via cytokinins 

(Wally et al., 2013; Kałużewicz et al., 

2017). Cytokinins are plant hormones that 

protect chloroplasts by delaying senescence 

and maintaining their functionality, which 

explains their effect when applied via 

biostimulants. They reduce oxidative stress 

by regulating antioxidant enzyme activity, 

minimizing the accumulation of reactive 

oxygen species that damage chloroplasts. 

Additionally, they regulate the 

expression of genes involved in chloroplast 

structure and function. Study developed by 

Saeger et al. (2020) and Ali et al. (2022), the 

A. nodosum-based biostimulant has been 

shown to contribute to chlorophyll 

synthesis and reduce ROS activity by 

providing essential nutrients and precursors 

necessary for chlorophyll biosynthesis. 

 

 

 
**, * – significant at p < 0.01 and p < 0.05, respectively. 

Figure 1: Chlorophyll a (Chl. a) in moringa as a function of the electrical conductivity of 

irrigation water – ECiw (A) and biostimulant (B) at 60 days after emergence. 

 

For chlorophyll b, an increase was 

observed in response to ECw up to 3.0 dS 

m-1, reaching a maximum value of 8.91 FCI. 

This point represented the highest gain, 

while the lowest gain occurred at an ECw of 

10 dS m-1, resulting in a value of 7.3 FCI, 

reflecting an 18% reduction in Chl. b index. 

However, the application of the 

biostimulant showed positive responses 

regarding the increase in irrigation ECw, 

with the most significant enhancement 

noted at 10 dS m-1 when using a 

concentration of 10 mL L-1 (8.6 FCI), which 

led to a 17.81% increase compared to plants 

without biostimulant application at the 

same salinity (Figure 2A). 

For total chlorophyll, a decrease of 

16.9% was observed as the ECw increased, 

dropping from 42.14 to 35.02 FCI between 

ECw of 0.5 and 10 dS m-1. However, the 

application of the biostimulant led to an 

increase in total chlorophyll content, with 

the highest value of 44.41 FCI recorded in 

plants irrigated with water at 0.5 dS m-1 and 

treated with a concentration of 5.96 mL L-1 

of biostimulant. At the highest salinity, it 

was found that increasing the biostimulant 

concentration resulted in greater 

chlorophyll synthesis, showing a 16.56% 

increase compared to plants that did not 

receive biostimulant treatment (Figure 2B). 

The observed increase in chlorophyll 

content in plants treated with the A. 

nodosum-based biostimulant can be 

explained by its composition, which 

includes essential nutrients and bioactive 

compounds such as amino acids, humic and 

fulvic acids, and plant growth regulators. 

These substances play a pivotal role in 

enhancing the activity of chlorophyll 
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synthase, the enzyme responsible for 

chlorophyll synthesis, while simultaneously 

reducing its degradation. As chlorophylls 

are key photosynthetic pigments and 

sensitive indicators of stress-induced 

changes in photosynthetic processes, this 

improvement in chlorophyll content 

suggests enhanced photosynthetic 

efficiency and better plant resilience under 

salinity stress (Lanfer-Márquez, 2003; 

Saeger et al., 2020; Smiderle et al., 2022). 
The chlorophyll a/b ratio in moringa 

plants decreased as the ECw increased, 

reaching a value of 3.59 when irrigated with 

4.4 dS m-1, which represents a reduction of 

6.26%. Subsequently, this ratio increased 

until an ECw of 10 dS m-1, reaching 4.20. A 

similar trend was observed in plants treated 

with the biostimulant, particularly at a 

concentration of 10 mL L-1 under salt stress 

conditions of 0.5 dS m-1 (4.89), resulting in 

a 21.26% increase in the chlorophyll a/b 

ratio compared to plants without 

biostimulant application (Figure 2C). This 

increase in the chlorophyll a/b ratio is 

associated with a rise in chlorophyll a 

production relative to chlorophyll b, which 

can be linked to chlorophyll a being the 

primary reaction center of the photosystem, 

while chlorophyll b enhances the absorption 

of longer wavelengths of light (Huihui et al., 

2020). Such behavior has been documented 

in studies on salinity effects in moringa 

(Farooq et al., 2022; Azeem et al., 2023), as 

well as in research involving A. nodosum-

based biostimulants (Raja and Vidya, 2023; 

Melo et al., 2024). 

The increase in biostimulant doses also 

resulted in a 22.37% reduction in initial 

fluorescence (F0) between the doses of 0 

and 10 mL L-1 at an ECw of 0.5 dS m-1 

(Figure 2D). This reduction in F0 occurs as 

a response to adjustments in the 

photosynthetic apparatus, involving an 

increase in the efficiency of photosystem II 

(PSII), reflecting a protective response or 

damage to chloroplasts under high salinity 

levels (Gulzar et al., 2020). The 

maintenance of energy utilization for 

activating the reaction centers of the 

photosystem observed with the application 

of the biostimulant can be attributed to its 

ability to enhance the efficiency of light 

capture and energy transfer within PSII. By 

supporting the structural and functional 

stability of PSII under stress conditions, the 

biostimulant mitigates potential damage to 

the photosynthetic apparatus. This results in 

improved light-use efficiency, ensuring that 

the energy absorbed is effectively utilized 

for photochemical processes, thereby 

protecting the photosystem and sustaining 

photosynthetic performance, even under 

adverse conditions (Santaniello et al., 

2017). 

Regarding the maximum fluorescence 

(Fm) of moringa plants (Figure 2E), it was 

observed that as the ECw increased, there 

was a significant reduction in Fm, 

decreasing from 828.27 at an ECw of 0.5 dS 

m-1 to 334.57 at 10 dS m-1, which represents 

a 59.6% decline. A similar trend was 

observed with the application of the 

biostimulant at an ECw of 0.5 dS m-1, 

showing a reduction of 23.75% with a 

concentration of 10 mL L-1 (631.52) 

compared to plants without biostimulant 

application at the same salinity (828.27). 

However, at a salinity level of 10 dS m-1, 

applying the biostimulant at a concentration 

of 10 mL L-1 (643.02) resulted in a 37.2% 

increase compared to plants that did not 

receive the treatment. 

Thus, the decrease in maximum 

fluorescence due to salt stress is attributed 

to reduced energy capture at the reaction 

centers, caused by disturbances in the 

plant’s metabolic activity, which lead to the 

generation of ROS. This, in turn, limits the 

energetic activity of photosynthetic 

pigments (Zhang et al., 2010). 

Consequently, during salt stress, plants 

require metabolic adjustments to protect 

themselves from oxidative damage, with 

plant hormones playing a crucial role in 

defense signaling by regulating ROS. In this 

context, studies such as those by 

Omidbakhshfard et al. (2020) have shown 

that bioactive compounds from the A. 

nodosum biostimulant activate hormonal 
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biosynthesis pathways, such as auxins and 

gibberellins, which reduce oxidative stress 

and provide protection to the plants. 

The variable fluorescence (Fv) also 

experienced the effects of ECw (Figure 2F), 

decreasing from 634.51 to 213.91 between 

the lowest and highest ECw levels, 

representing a reduction of 66.28%. When 

comparing plants without biostimulant 

application to those receiving a 

concentration of 10 mL L-1, the 

biostimulant resulted in a 29.49% reduction 

in Fm at an ECw of 0.5 dS m-1. In contrast, 

under higher salinity (10 dS m-1), the 

biostimulant led to a 45.48% increase in Fv 

with the same concentration compared to 

plants that did not receive the treatment. 

Since Fv represents the active potential 

energy in the photosystem, any loss in its 

value indicates limitations in the activation 

of the electron transport chain, which is 

responsible for ATP and NADPH 

production, potentially leading to decreased 

efficiency in the photosystem (Silva et al., 

2018; Lotfi et al., 2020). This behavior is 

common in plants experiencing salt stress 

(Bashir et al., 2021). 

The biostimulant led to an increase in Fm 

when the plants were under salt stress, 

likely because the protein hydrolysates and 

humic acids present in brown algae extracts 

(A. nodosum) promote greater antioxidant 

activity in essential enzymes (Colla and 

Rouphael, 2015), such as catalase and 

superoxide dismutase, while also reducing 

the accumulation of H2O2 in leaf tissues. 

This behavior was also observed by Amor 

et al. (2005) in Crithmum maritimum. 

The increase in the salinity of irrigation 

water for plants without biostimulant 

application maintained the quantum 

efficiency of the photosystem up to an ECw 

of 4.43 dS m-1, rising from 0.765 at 0.5 dS 

m-1 to 0.766, followed by a subsequent 

reduction of 7.57% up to an ECw of 10.00 

dS m-1 (Figure 2G). However, the 

application of the biostimulant led to 

improvements in Fv/Fm, contributing to the 

maximum value of this variable (0.791) at 

an ECw of 4.43 dS m-1 with a concentration 

of 4.5 mL L-1. Additionally, at an ECw of 

10 dS m-1, a concentration of 6.6 mL L-1 

resulted in a 7.11% increase in Fv/Fm, 

approaching the value of 0.766 obtained in 

plants under lower salinity conditions. 

Exposure of plants to salt stress leads to 

a decrease in the maximum quantum yield 

of photosystem II (Fv/Fm) due to ionic 

toxicity, suggesting that the reaction centers 

of PSII may suffer partial damage or even 

inactivation as a result of stress (Shi-chu et 

al., 2019; Shahzad et al., 2021). Conversely, 

the application of the biostimulant has 

demonstrated the ability to increase Fv/Fm 

values even during periods of salt stress, 

likely reducing the damage caused by 

photoinhibition and thus preserving the 

photosynthetic capacity of the plants 

(Akhter et al., 2021). 

The relative growth rate of plant height 

(RGRph) in moringa plants was 

significantly affected by irrigation with 

brackish water (Figure 3A), showing a 

reduction of 3.1% as it decreased from 

0.02199 cm cm-1 day-1 with 0.5 dS m-1 to 

0.02129 cm cm-1 day-1 at 10 dS m-1. 

However, the application of the 

biostimulant had beneficial effects on 

RGRph, with the greatest contribution 

observed in plants irrigated with freshwater. 

The maximum growth rate recorded was 

0.0284 cm cm-1 day-1 with a concentration 

of 9.17 mL L-1, which was 22.57% higher 

than that of plants without biostimulant 

application at an ECw of 0.5 dS m-1. 

The maintenance of plant height under 

salt stress may be related to signaling 

processes that detect high levels of Na+ and 

hyperosmolarity, leading to alterations in 

phospholipid composition. This results in 

adaptive processes to alleviate stress, such 

as maintaining ionic and osmotic balance, 

inducing phytohormones, and regulating 

cytoskeletal dynamics and cell wall 

structure (Zhao et al., 2021). These 

processes help mitigate the growth effects 

on plants, as observed by Farooq et al. 

(2022) and Azeem et al. (2023) in M. 

oleifera. 
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Figure 2: Chlorophyll b (A), total chlorophyll (B), chlorophyll a/b ratio (C), initial fluorescence 

(D), maximum fluorescence (E), variable fluorescence (F), and Fv/Fm ratio (G) in moringa as a 

function of the electrical conductivity of irrigation water – ECiw and biostimulant application 

at 60 days after emergence.
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The increase in salinity levels had more 

severe effects on the relative growth rate of 

stem diameter (Figure 3B), resulting in a 

5.46% loss by the time the salinity reached 

10 dS m-1. This may be related to cellular 

turgor, which is impacted by the restriction 

of water absorption due to the osmotic 

effects of salts in the soil, leading to reduced 

cell expansion (Lu and Fricke, 2023) and, 

consequently, affecting stem diameter. 

The application of the biostimulant had a 

positive impact on the relative growth rate 

of stem diameter, with the greatest 

contribution observed at an ECw of 3.73 dS 

m-1. Applying 4.36 mL L-1 resulted in the 

maximum growth rate of 0.02286 mm mm-

1 day-1, which was 12.69% higher than that 

of plants without biostimulant under the 

same ECw (Figure 3B). This outcome can 

be attributed to the role of the A. nodosum 

biostimulant in maintaining the water 

potential of the plants, indicating an 

enhancement in solute accumulation as an 

osmoprotective strategy against water loss 

due to water deficit (Martynenko et al., 

2016). 
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Figure 3: Relative growth rates of plant height (A) and stem diameter (B) of moringa as a 

function of the electrical conductivity of irrigation water – ECiw and biostimulant application 

during the period from 10 to 60 days after emergence. 

 

Conclusions 

Salinity in water leads to losses in 

photochemical efficiency and stem 

diameter in moringa seedlings, with 

significant damage starting at an electrical 

conductivity of irrigation water (ECw) of 
5.25 dS m-1. 

The application of a biostimulant at a 

concentration of 5 mL L-1 enhances 

photochemical activity and growth of 

moringa seedlings under salt stress of up to 

10 dS m-1 by 60 days after sowing. 
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