Plato's mathematical “platonism”

Authors

DOI:

https://doi.org/10.31977/grirfi.v23i3.3411

Keywords:

Mathematics Entities; Platonism; Intermediates; Divided line.

Abstract

Several contemporary philosophers and mathematicians admit the existence of a branch of mathematical philosophy called “Platonism”, according to which mathematical entities - numbers, points, lines, planes, etc. - are things that exist in the world independently of us. In the specialized literature, it is common to understand that this philosophical thesis has its origins in Plato's theory of Forms. However, the statement that mathematical entities exist in themselves is not found in the philosophy of this Athenian philosopher, as observed in passage 509d and the following sections of his dialogue "The Republic." In reality, according to Plato's mathematical thinking, mathematical entities have an intermediate value, as we demonstrate in the following sections by "reconstructing" his reasoning of the “divided line”, based on excerpts from “The Republic”: (1) Book V: 477a-b, 477e, 478b, 478c, 478d; (2) Book VI: 509d-e, 510a, 510b, 510c-d, 510e, 511a, 511a-b, 511d, 511e; (3) Book VII: 533b-c, 534a.  

Downloads

Download data is not yet available.

Author Biography

Rodrigo Ferreira, Universidade Federal do Rio Grande do Norte (UFRN)

Doutor(a) em Filosofia pela Universidade Federal da Paraíba (UFPB), João Pessoa – PB, Brasil. Professor(a) da Universidade Federal do Rio Grande do Norte (UFRN), Natal – RN, Brasil e da Universidade Estadual da Paraíba (UEPB), João Pessoa – PB, Brasil.

References

BERNAYS, P. On platonism in mathematics in P. Benacerraf e H. Putnam, eds., Philosophy of Mathematics. Cambridge: Cambridge University Press, 1983: 258–271.

COSTA, Newton C. A. Introdução aos Fundamentos da Matemática. São Paulo: Hucitec, 1977.

EVES, Howard. Introdução à história da matemática. Trad. Higyno H. Domingues. Campinas: Unicamp, 2004.

HEYTING, A. Intuitionism: An Introduction. Studies in Logic and the Foundations of Mathematics. Amsterdam: North-Holland Publishing Company, 1971.

KANT, Immanuel. Crítica da Razão Pura. Trad. Valério Rohden. São Paulo: Nova Cultura, 2000.

Lindström, Sten; Palmgren, Erik, Segerberg, Krister, Stoltenberg-Hansen, Viggo. Logicism, Intuitionism, and Formalism: What Has Become of Them? New York: Springer, 2009.

MURACHCO, Henrique. Língua Grega: visão semântica, lógica, orgânica. São Paulo: Vozes, 2007.

MCLARTY, Colin. Mathematical Platonism' Versus Gathering the Dead: What Socrates teaches Glaucon in Philosophia Mathematica (III), 13, 2005: 115– 134.

PLATO. The Republic (ΠΛΑΤΏΝ. “Πολιτεία”) Trad. Paul Shorey. London: Harvard University press, 2003.

Platão. A República de Platão. Trad. J. Guinsburg. São Paulo: Perspectiva, 2006.

QUINE, Willard Van Orman. Um Ponto de Vista Lógico: nove ensaios lógico-filosóficos. Tradução Antonio Ianni Sagatto. São Paulo: Unesp, 2011.

REALE, Giovanni. História da filosofia. Trad. Ivo Storniolo. São Paulo: Paulus, 2004.

SANTOS, José Trindade. Da Natureza: tradução, notas e comentários. São Paulo: Loyola, 2002.

VAN DALEN, D. Brouwer's Cambridge Lectures on Intuitionism. Cambridge: Cambridge University Press, 1981.

Published

2023-10-31

How to Cite

FERREIRA, Rodrigo. Plato’s mathematical “platonism”. Griot : Revista de Filosofia, [S. l.], v. 23, n. 3, p. 1–10, 2023. DOI: 10.31977/grirfi.v23i3.3411. Disponível em: https://www3.ufrb.edu.br/index.php/griot/article/view/3411. Acesso em: 5 jan. 2025.

Issue

Section

Articles