Ancoragem molecular para avaliar o potencial anticaspa de metabólitos secundários do Pinhão Roxo

Authors

  • Crismeire Santana Santos Filadelfo Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, s/no, nº, 44380-000, Cruz das Almas, BA, Brasil.
  • Manuela Oliveira de Souza Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, s/no, nº, 44380-000, Cruz das Almas, BA, Brasil.
  • Francielly Carvalho de Oliveira Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, s/no, nº, 44380-000, Cruz das Almas, BA, Brasil.
  • Ilneide Braz Santos de Jesus Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, s/no, nº, 44380-000, Cruz das Almas, BA, Brasil.
  • Simone Alves Silva Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, s/no, nº, 44380-000, Cruz das Almas, BA, Brasil.
  • Ciro Ribeiro Filadelfo Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, s/no, nº, 44380-000, Cruz das Almas, BA, Brasil.

Keywords:

Docking, Jatropha gossypiifolia, Vitexin

Abstract

The objective of study was to investigate secondary metabolites with medicinal potential from Jatropha gossypiifolia L., vitexin and jatrophone, through in silico molecular coupling with a mutant lipase (SMG1), fundamental in survival of a dandruff-causing species (Malassezia globose). To obtain the structures, proteins and ligands, the PDB (Protein Data Bank) and PubChem were used, respectively. For the toxicity analysis of the binding molecules, ADMET 2.0 was used. Molecular dockings were performed by AutoDock Vina and visualized in Pymol, and Discovery Studio to obtain 2D and 3D images. The results of  molecular coupling of SMG1 with its potential inhibitors reveal that jatrophone has high affinity in relation to other ligands, however, vitexin may have a lesser harmful effect. Such findings justify future in vitro and in vivo investigations, further exploring the biotechnological potential this plant, facilitating its integration into health system and enriching the country's list of herbal medicines, through National List of Essential Medicines (RENAME).

Downloads

Download data is not yet available.

Author Biography

Ciro Ribeiro Filadelfo, Universidade Federal do Recôncavo da Bahia, Centro de Ciências Agrárias, Ambientais e Biológicas, s/no, nº, 44380-000, Cruz das Almas, BA, Brasil.

I have a degree in Biological Sciences from the State University of Santa Cruz (2007), a master's and doctorate in Science with an emphasis on Cellular Biology from the Postgraduate Program in Biotechnology and Investigative Medicine at the Gonçalo Muniz Research Center - Oswaldo Cruz Foundation. I am a laboratory technician (biology) and I was a substitute professor of General Biochemistry at the Federal University of Recôncavo da Bahia. I taught the discipline of biochemistry at Faculdade Ruy Barbosa and at Faculdade Maria Milza, as well as in the latter, I taught the disciplines: cytology, histology, embryology and pathology. I have experience in the area of Biochemistry, with emphasis on enzymology in the themes: schistosomiasis mansoni and oxidative stress; Moniliphthora perniciosa/Theobroma cacao and peroxidase; and with lipids: Ricinus Communis L./ricinoleic acid. In addition, I have knowledge in the field of Genetics, for DNA/RNA extraction methods, Ricinus Communis L. PCRs and bioinformatics (molecular anchoring).

References

Antônio, G. D., Tesser, C. D., & Moretti-Pires, R. O. (2014). Phytotherapy in primary health care. Revista de Saude Pública, 48 (3), 541-553. Doi: 10.1590/S00348910.2014048004985.

Araújo W. R. M., et al. (2014). Inserção da fitoterapia em unidades de saúde da família de São Luís, Maranhão: realidade, desafios e estratégias. Revista Brasileira de Medicina de Família e Comunidade, 9 (32), 258-263. Doi: 10.5712/rbmfc9(32)789.

Arthur, D. E., & Uzairu, A. (2019). Molecular dock-ing studies on the interaction of NCI anticancer analogues with human Phosphatidylinositol 4, 5-bisphosphate 3-kinase catalytic subunit. Journal of King Saud University-Science, 31 (4), 1151-1166. Doi: 10.1016/j.jksus.2019.01.011.

Biovia Discovery Studio Visualizer. (2019). Comprehensive Modeling and Simulation for Life Sciences Research [Software Design de fármacos] (Versão 20.1.0.19295). San Diego: Dassault Systèmes. Recuperado de: https://www.3ds.com/products/biovia/discovery-studio

Berman, H. M. et al. (2000). The Protein Data Bank. Nucleic Acids Research 28 (1), 235-242. Doi: 10.1093/nar/28.1.235.

Brandl, M., et al. (2001). CH π-interactions in proteins. Journal of molecular biology, 16;307 (1),357-77. Doi: 10.1006/jmbi.2000.4473.

Brasil.Presidência da República. (2006). Decreto Presidencial nº 5.813, de 22 de junho de 2006. Aprova a Política Nacional de Plantas Medicinais e Fitoterápicos. Brasília,DF: Diário Oficial da União. Recuperado de: https://www.planalto.gov.br/ccivil_03/_ato2004-2006/2006/decreto/d5813.htm.

Cavalcante, N. B., Santos, A. D. C., & Almeida, J. R. G. S. (2020). The genus Jatropha (Euphor-biaceae): a review on secondary chemical me-tabolites and biological aspects. Chemico-biological interactions, 25:318:108976. Doi: 10.1016/j.cbi.2020.108976.

Dawson, T. L. (2007). Malassezia globosa and restricta: breakthrough understanding of the etiol-ogy and treatment of dandruff and seborrheic dermatitis through whole-genome analy-sis. Journal of Investigative Dermatology Sympo-sium Proceedings, 12, (2), 15-9. Doi: 10.1038/sj.jidsymp.5650049.

Deangelis, Y. M., et al. (2007). Isolation and expression of a Malassezia globosa lipase gene, LIP1. Journal of Investigative Dermatology, 127 (9), 2138-2146. Doi: 10.1038/sj.jid.5700844.

Devappa, R. K., Makkar, H. P., & Becker, K. (2011). Jatropha diterpenes: a review. Journal of the American Oil Chemists' Society, 88 (3), 301–322. Doi: 10.1007/s11746-010-1720-9.

Duan, S., et al. (2020). Effect of vitexin on alleviating liver inflammation in a dextran sulfate sodium (DSS)-induced colitis model, Biomedicine & Pharmacotherapy, 121 (109683). Doi: 10.1016/j.biopha.2019.109683.

Félix-Silva, J., et al. (2014). Jatropha gossypiifolia L. (Euphorbiaceae): a review of traditional uses, phytochemistry, pharmacology, and toxicology of this medicinal plant. Evidence-Based Comple-mentary and Alternative Medicine, 1–32. Doi: 10.1155/2014/369204.

Fokoue, H. H., et al. (2020). Há Algo Novo No Reconhecimento Molecular Aplicado à Química Medicinal? Quimica Nova, 43 (1), 78-89. Doi: 10.21577/0100-4042.20170474.

Granados, S., et al. (2015). Evaluation of the hy-poglycemic effects of flavonoids and extracts from Jatropha gossypiifolia L. Molecules, 20 (4), 6181–6193. Doi: 10.3390/molecules20046181.

Guo, S., et al. (2015a). Novel inhibitor against Malassezia globosa LIP1 (SMG1), a potential anti-dandruff target. Bioorganic & medicinal chemistry letters, 25 (17), 3464-3467. Doi 10.1016/j.bmcl.2015.07.005.

Guo, S., et al. (2015b). Structure of product‐bound SMG 1 lipase: active site gating implica-tions. The FEBS Journal, 282 (23), 4538-4547. Doi:10.1111/febs.13513.

Hussain, M., Raza, S. M., & Majeed, A. (2015). Folkloric uses of Jatropha gossypiifolia in emesis and gut motility disorders: pharmacological validation. Bangladesh Journal of Pharmacology, 10 (4), 864–869. Doi: 10.3329/bjp.v10i4.23898

Kim, S., et al. (2023). PubChem 2023 update. Nucleic Acids Research, 51 (1), 1373–D1380. Doi: 10.1093/nar/gkac956.

Nishio, M., et al. (2014). CH–π hydrogen bonds in biological macromolecules. Physical Chemistry Chemical Physics, 25, 12648-12683. Doi 10.1039/c4cp00099d.

Noor, K. K., et al. (2022). Hepatoprotective role of vitexin against cadmium-induced liver damage in male rats: A biochemical, inflammatory, apoptotic and histopathological investigation. Biomedicine & Pharmacotherapy, 150, 12934. Doi: 10.1016/j.biopha.2022.112934

Nwokeji, P. A., et al. (2016). The Chemistry of Natural Product: Plant Secondary Metabolites. International Journal of Technology Enhance-ments and Emerging Engineering Research, 4,

(8), 1-8. Recuperado de: https://www.researchgate.net/publication/320685300.

Oakley, A. J., et al. (2010). Structural and func-tional basis of resistance to neuraminidase inhibi-tors of influenza B viruses. Journal of medicinal chemistry, 53 (17), 6421-31. Doi: 10.1021/jm100621s.

Organização Mundial de Saúde. (2002). Medicina tradicional: necessidades crecientes y potencial. Policy perspectives on medicines, Genebra, (2), 1-6. Recuperado de: https://iris.who.int/handle/10665/67296.

Pacheco, B. L. & Amorim, A. V. (2020). Metabólitos secundários de plantas. Revista Agrotecnologia, 11 (1), 54-67. Recuperado de: https://www.revista.ueg.br/index.php/agrotecnologia/article/view/9705

Povichit, N., et al. (2010). Phenolic content and in vitro inhibitory effects on oxidation and protein glycation of some Thai medicinal plants. Pakistan Journal of Pharmaceutical Sciences, 23 (4), 403–408. Recuperado de: https://www.researchgate.net/publication/47156126_Phenolic_content_and_in_vitro_inhibitory_effects_on_oxidation_and_protein_glycation_of_some_Thai_medicinal_plants.

Ribeiro, D. A., et al. (2014). Potencial terapêutico e uso de plantas medicinais em uma área de Caatinga no estado do Ceará, Nordeste do Brasil. Revista Brasileira De Plantas Medicinais, 16 (4), 912–930. Doi: 10.1590/1983-084X/13_059.

Sabandar, C. W., et al. (2013). Medicinal property, phytochemistry and pharmacology of several Jat-ropha species (Euphorbiaceae): a review. Phyto-chemistry, 85, 7–29. Doi: 10.1016/j.phytochem.2012.10.009.

Sanner, M. F., Olson, A. J. & Spehner, J. C. (1996). Reduced surface: an efficient way to com-pute molecular surfaces. Biopolymers, 38 (3), 305-320. Doi: 10.1002/(SICI)1097- 0282(199603)38:3%3C305::AID-BIP4%3E3.0.CO;2-Y.

Trott, O. & Olson, A. J. (2010). AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization, and multithreading. Journal Computational Chemistry, 31 (2), 455-461. Doi: 10.1002/jcc.21334.

Varela, D. S. S. & Azevedo, D. M. (2014). Saberes e práticas fitoterápicas de médicos na estratégia saúde da família. Trabalho Educação e Saúde, 12 (2), 273-290. Doi: 10.1590/S1981-77462014000200004.

Wu, Q., Patocka, J., Nepovimova, E. & Kuca, K. (2019). Jatropha gossypiifolia L. and its biologi-cally active metabolites: A mini review. Journal of ethnopharmacology, 234, 197-203. Doi: 10.1016/j.jep.2019.01.022.

Xiong, G, et al. (2021) ADMETlab 2.0: an inte-grated online platform for accurate and compre-hensive predictions of ADMET properties. Nucleic Acids Research, 49 (1), 5-14. Doi: 10.1093/nar/gkab255.

Xu, T., et al. (2012). Crystal structure of a mono- and diacylglycerol lipase from Malassezia globosa reveals a novel lid conformation and insights into the substrate specificity. Journal of Structural Bi-ology, 178 (3), 363-369. Doi: 10.1016/j.jsb.2012.03.006.

Xu, J., et al. (2015). Crystal structure of SMG1 F278N mutante. Doi: 10.2210/pdb4zrd/pdb.

Zhang, L. et al. (2022). Vitexin attenuates auto-immune hepatitis in mouse induced by syngeneic liver cytosolic proteins via activation of AMPK/AKT/GSK-3β/Nrf2 pathway, European Journal of Pharmacology, 917 (174720). Doi: 10.1016/j.ejphar.2021.174720

Zhang, X., et al. (2009) Chemical Constituents of the Plants from Genus Jatropha. Chemistry & biodiversity, 6 (12), 2166-2183. Doi: 10.1002/cbdv.200700461.

Published

2024-07-08

How to Cite

Santana Santos Filadelfo, C., Oliveira de Souza, M., Carvalho de Oliveira, F., Braz Santos de Jesus, I., Alves Silva, S., & Filadelfo, C. R. (2024). Ancoragem molecular para avaliar o potencial anticaspa de metabólitos secundários do Pinhão Roxo. MAGISTRA, 34. Retrieved from https://www3.ufrb.edu.br/index.php/magistra/article/view/4834

Issue

Section

Artigo Científico

Categories

Similar Articles

You may also start an advanced similarity search for this article.